Skeletal dosimetry in the MAX06 and the FAX06 phantoms for external exposure to photons based on vertebral 3D-microCT images.
نویسندگان
چکیده
3D-microCT images of vertebral bodies from three different individuals have been segmented into trabecular bone, bone marrow and bone surface cells (BSC), and then introduced into the spongiosa voxels of the MAX06 and the FAX06 phantoms, in order to calculate the equivalent dose to the red bone marrow (RBM) and the BSC in the marrow cavities of trabecular bone with the EGSnrc Monte Carlo code from whole-body exposure to external photon radiation. The MAX06 and the FAX06 phantoms consist of about 150 million 1.2 mm cubic voxels each, a part of which are spongiosa voxels surrounded by cortical bone. In order to use the segmented 3D-microCT images for skeletal dosimetry, spongiosa voxels in the MAX06 and the FAX06 phantom were replaced at runtime by so-called micro matrices representing segmented trabecular bone, marrow and BSC in 17.65, 30 and 60 microm cubic voxels. The 3D-microCT image-based RBM and BSC equivalent doses for external exposure to photons presented here for the first time for complete human skeletons are in agreement with the results calculated with the three correction factor method and the fluence-to-dose response functions for the same phantoms taking into account the conceptual differences between the different methods. Additionally the microCT image-based results have been compared with corresponding data from earlier studies for other human phantoms.
منابع مشابه
FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations.
Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been developed in the first part of this study using 3D animation software and anatomical atlases to replace the image-based FAX06 and the MAX06 voxel phantoms. 3D modelling methods allow for phantom development independent from medical images of patients, volunteers or cadavers. The second pa...
متن کاملDose to medium versus dose to water as an estimator of dose to sensitive skeletal tissue.
The purpose of this study is to determine whether dose to medium, D(m), or dose to water, D(w), provides a better estimate of the dose to the radiosensitive red bone marrow (RBM) and bone surface cells (BSC) in spongiosa, or cancellous bone. This is addressed in the larger context of the ongoing debate over whether D(m) or D(w) should be specified in Monte Carlo calculated radiotherapy treatmen...
متن کاملElectron Beam Dosimetry in Heterogeneous Phantoms Using a MAGIC Normoxic Polymer Gel
Introduction: Nowadays radiosensitive polymer gels are used as a reliable dosimetry tool for verification of 3D dose distributions. Special characteristics of these dosimeters have made them useful for verification of complex dose distributions in clinical situations. The aim of this work was to evaluate the capability of a normoxic polymer gel to determine electron dose distributions in differ...
متن کاملIndividual virtual phantom reconstruction for organ dosimetry based on standard available phantoms
Background: In nuclear medicine application often it is required to use computational methods for evaluation of organ absorbed dose. Monte Carlo simulation and phantoms have been used in many works before. The shape, size and volume in organs are varied, and this variation will produce error in dose calculation if no correction is applied. Materials and Methods: A computational framewo...
متن کاملEvaluation of a fast method of EPID-based dosimetry for IMRT and Comparison with 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT
Introduction: Electronic portal imaging devices (EPIDs) could potentially be useful for intensity-modulated radiation therapy (IMRT) and VMAT QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed as imaging devices, not dosimeters, and as a result they do not inherently measure dose in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 51 24 شماره
صفحات -
تاریخ انتشار 2006